Electrochemically mediated in situ growth of electroactive polymers for highly sensitive detection of double-stranded DNA without sequence-preference

elsevier-non-solus.png

Publication date: 15 March 2018
Source:Biosensors and Bioelectronics, Volume 101
Author(s): Qiong Hu, Qiangwei Wang, Jinming Kong, Lianzhi Li, Xueji Zhang
The ability to directly detect double-stranded DNA (dsDNA) without sequence-preference continues to be a major challenge. Herein, we report an electrochemical method for the direct, highly sensitive detection of dsDNA based on the strand replacement of dsDNA by peptide nucleic acid (PNA) and the in situ growth of electroactive polymers through the surface-initiated electrochemically mediated atom transfer radical polymerization (SI-eATRP). Thiolated PNA molecules are firstly self-assembled onto gold electrode surface for the specific recognition of target dsDNA (dsDNA-T), which in turn leads to the formation of a high density of PNA/DNA heteroduplexes on the electrode surface for the subsequent attachment of ATRP initiators via the phosphate-Zr4+-carboxylate chemistry. By applying a negative potential to the electrode, the air-stable CuII deactivators can be reduced into the CuI activators so as to trigger the surface-initiated polymerization for the in situ growth of electroactive polymers. Due to the strand replacement of dsDNA by PNA, dsDNA can be directly detected without sequence-preference. Besides, the growth of polymers enables the modification of numerous electroactive probes, thereby greatly improving the electrochemical signal. Under optimal conditions, a good linearity between the electrochemical signal and the logarithm of dsDNA-T concentration over the range from 1.0 fM to 1.0nM, with a detection limit of 0.47 fM, can be obtained. Results indicate that it is highly selective, and holds high anti-interference capability in the presence of human serum samples. Therefore, this method offers great promises in providing a universal and efficient solution for the direct detection of dsDNA.

from # & – All via ola Kala on Inoreader http://ift.tt/2yIBttg

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s